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ABSTRACT 

In this paper, the combined problem of slew maneuver control 
and vibration suppression of NASA Spacecraft Control Laboratory 
Experiment (SCOLE) is considered. The coupling between the rigid 
body modes and the flexible modes together with the effect of the 
control forces on the flexible antenna is discussed. The nonlinearities 
in the equations are studied in terms of slew maneuver angular velo- 
cities. 

INTRODUCTION 

In this paper, the analytics for the combined problem of slew maneuver and 

vibration suppression are developed. It is assumed that the slew maneuver is per- 

formed by applying moments on the rigid shuttle and the vibration suppression is 

achieved by means of forces on the flexible antenna and the reflector. The slew 

maneuver is considered to be an arbitrary maneuver about any given axis 1161. The 

effect of slew maneuver angular velocity on flexible modes is studied by examining 

the spectral norm of the matrix term associated with the coupling between the 

rigid-body modes and the flexible modes. Also, the kinematic nonlinearities are 

further analyzed in terms of the matrix spectral norm variation of the correspond- 

ing term with respect to slew maneuver angular velocity. 
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ANALYTIC3 

The slew maneuver is defined as 

- A - Axis about which the slew maneuver is performed. 

- The slew Angle 

- o - The angular velocity of the orbiter in the inertial frame. 

The four Euler parameters can be defined as 

c1 = x si 1 
n 2  

c2 = A si h 
n 2  
L 
h 

2 
c3 = X3sin 

2 
€4 = cos 

The four Euler parameters can be related to the angular velocity components 

of the rigid assembly as 

0 

0 1  

0 2  

0 3  

The slewing maneuver can be given in terms of the following equations [I61 

where, 

G(t  ) is the net moment applied about the mass center of the orbiter and is 
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given by the following equation (figs. 1 & 2) 

- G ( t  I = G, ( t  I + k. + a)xF_z (51 

Also, Q(t  ) represents the generalized force vector which is given by the following 

equation 

Q(t  = 

m 

C ( Q j x l ( t  + Q j y l ( t  1) + Q x ,  + Q y l  + Q+, 
j =1 

... 

... 

... 

... 

and 

Here, Fjx (z  ,t is the x component of the concentrated force applied at  location j 

on the flexible antenna and F j y  is the y component of that force. 

Also, 
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Q +i ( t  I = M + ( t  M + i  ( L  I 

Here, F 2  is the force applied at the reflector C. G. 

Thus, 

The location of reflector C. G. is given by coordinates (rx,r, ,)  and M2+ 

represents the external moment applied at  the reflector C. G. Also, the nonlineari- 

ties IV2 can be expressed in terms of pure rigid body kinematic nonlinearity and 

the nonlinear coupling term between the rigid-body modes and the flexible modes. 

If only a slew maneuver is to be considered, then Q(t ) EQ and F z  and 

only moments are applied at  the orbiter C. G. However, the angular velocity vector 

a is nonzero during the maneuver and the flexible modes will be excited. This 

effect of coupling between the rigid-body modes and flexible modes can be obtained 

by evaluating A s  which depends on the angular velocity vector. In figure 3, using 

the matrix spectral norm as a measure, the coupling effect is studied as a function 

of slew angular velocity. The first ten flexible modes are considered for this 

analysis. The kinematic nonlinearity is also obtained in terms of matrix spectral 

norm as 'a function of 0. This analysis can be utilized in the linearization of the 

slew maneuver dynamical equations. An example of this is shown in figure 4 

which is a single plane slew maneuver. In this case, it is almost a linear relation- 

ship in terms of a single angular velocity component. 
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(b) Slew Maneuver Control and Vibration Suppression 

If it is desired to design control systems for the simultaneous task of slew 

maneuver control and vibration suppression, then equations (3 )-( 1 1 1 should be 

used. It can be seen that vibration control forces also affect the slew maneuver 

dynamics through control moment coupling terms. 

Thus, these equations would suggest that in order to achieve control efficiency 

and to minimize the line of sight error in minimum time, it may be necessary to 

synthesize control systems for the combined problem of slew maneuver and vibra- 

tion suppression. 
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Figure 1- Position Vectors in Inertial Frame 
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Figure 2- Vectors in Body-fixed Frame 
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